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The study demonstrates that radical formation and decay can 
be studied with nanosecond time resolution by using FT ESR. This 
makes it possibile to monitor reactions that proceed at close to 
diffusion-controlled rates. Spin polarization effects give infor­
mation on reaction mechanisms. The ability to probe the spin 
state within nanoseconds of radical formation may make it possible 
to study development of RP generated spin polarization and get 
information on the electronic state of the transient ion pair formed 
in the electron-transfer reaction. It is noteworthy that spectra 
obtained with delays less than 1 /us exhibit unusual phase effects 
that may have their origin in the mechanism of spin state de­
velopment."12 Well-resolved (line width < 100 kHz) spectra 
with good signal-to-noise can be obtained. This facilitates iden­
tification of free-radical products. The method is superior to 
time-resolved ESR with use of a CW microwave source as well 
as spin echo ESR measurements in terms of sensitivity, spectral 
resolution, and time resolution.13 Lifetime broadening will affect 
spectral resolution significantly for radical lifetimes <1 jts. In 
that case kinetic data can be obtained by measuring the time 
evolution of the FID amplitude. 

ESR studies of photoinduced electron transfer of porphyrins 
(or chlorophylls) to quinones have lacked the time resolution 
required for studies of forward and back reactions. The time 
resolution of the FT ESR measurements is similar to that of flash 
photolysis measurements, and the results appear to be in general 
agreement.10 
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A long standing problem in the biosynthesis of polyketide de­
rived natural products (for reviews, see ref 2 and 3) is the 
mechanism of removal of phenolic hydroxyl groups.2 For example, 
the biochemical conversion of versicolorin A to sterigmatocystin, 
a sequence which forms the central segment of aflatoxin bio­
synthesis,4 involves the reductive removal of the 6-hydroxyl group 
of versicolorin A (or a related intermediate) by a mechanism which 
remains cryptic. In contrast, the appearance of deoxygenated 
aromatic compounds in nature is usually interpreted as the result 
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of reductive dehydration of a linear polyketide enzyme complex, 
as has been experimentally demonstrated at the cell free level for 
fatty acid5 and 6-methylsalicylic acid (6-MSA) biosynthesis,6'7 

although evidence for post aromatic deoxygenation has appeared 
recently.8,9 Thus, preliminary work8 showed that a specimen of 
the anthraquinone emodin (1) generally labeled with 3H is con­
verted by a crude cell-free system from Pyrenochaeta terrestris 
to its 6-deoxy derivative chrysophanol (2) indicating that deox­
ygenated metabolites cyanodontin and the secalonic acids produced 
by the organism10,11 are derived from emodin (1) via chrysophanol 
(2). In this study, the requirement for the cofactor NADPH was 
suggested, but the mechanism of the reaction was not rigorously 
defined. In this communication, we present experimental evidence 
for cell-free enzymatic reduction of the resorcinol ring in emodin 
(1) to chrysophanol (2) mediated by NADPH as cofactor, i.e., 
the aromatic counterpart of deoxygenation in fatty acid and 
polyketide biosynthesis. 

When emodin was incubated in a cell-free medium containing 
50% D2O,12 mass spectral analysis13 of the resultant chrysophanol 
specimen revealed the presence of non-, mono-, and dideuteriated 
species in the ratio 1:0.8:0.3 (Table I). The centers of deuteriation 
were determined by 1H NMR spectroscopy.14 As is seen in Figure 
IA, natural chrysophanol shows singlets at 7.20 8 and 7.63 5 for 
H-2 and H-4, doublets at 7.80 S and 7.36 8 for H-5 and H-7, and 
a triplet at 7.83 <5 for H-6. The deuteriated chrysophanol specimen 
showed relative 1H intensities in accord with deuterium substitution 
at positions 5 (13%), 6 (5%), and 7 (25%) (Figure IB). A 
mechanism which would account for deuterium enrichment at 
positions 5 and 7 is shown in Scheme I, involving NADPH re­
duction of the keto tautomers of emodin (3a,b to 4a,b). Further 
evidence for phenol-keto tautomerism was provided by mass 
spectral analysis of emodin recovered from incubation of the 
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Table I. Percent Mono- and Dideuteriated Chrysophanol and 
Emodin After Incubation of Emodin with a Crude Extract from 
Pyrenochaeta terrestris in 50% D2O 

substance 
recvd 

incubn 
medium 1 D/mol 2 D/mol 

chrysophanol 

emodin 
emodin 
emodin 

(a) complete 
(50% D20-buffer A) 

As (a) 
As (a)—NADPH 
As (a), boiled extract 
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Figure 1. 1H spectra (500 MHz) of (A) natural chrysophanol, (B) 
chrysophanol produced in medium containing 50% D2O in the presence 
of NADPH, and (C) chrysophanol produced in medium containing 
NADPH--W. 
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cell-free extract in 50% D2O buffer (Table I). In all cases, sig­
nificant 2H incorporation took place, but incorporation was highest 
in the presence of active enzyme (even in the absence of NADPH) 
indicating enzyme stabilization of the keto tautomers 3a,b. The 
presence of 5% 2H enrichment at position 6 could arise from 

exchange or from production of some NADPH-4-d in the medium. 
The latter mechanism was confirmed by incubation of emodin 
in the cell-free system containing the coupled enzyme components 
necessary for the generation of NADPH-4-d15 Isolation of the 
resultant chrysophanol and analysis by mass spectrometry showed 
40% enrichment with deuterium. Inspection of the 500 MHz 
NMR spectrum of this specimen (Figure IC) reveals that re-
giospeciflc deuteriation at C-6 has taken place. The sharp triplet 
(for H-6) at 7.83 8 is reduced in size by 40%, and the H-5 and 
H-7 doublets have large singlet components, indicating absence 
of coupling to H-6 (Scheme I). In one earlier report, NADPH 
has been shown to be necessary for phenolic reductions,16 but the 
emodin-chrysophanol conversion is the first example of reduction 
of a phenolic substrate at the cell-free level, in which the cofactor 
NADPH has been shown to serve as the source of hydride at the 
C-6 position in the final product. It should also be noted that a 
chemical model for the reduction of 1,3,6,8-tetrahydroxy-
naphthalene (known to exhibit phenol-keto tautomerism) to the 
hydroaromatic substance scytalone is available.17 

Further examples of this type of deoxygenation process are 
under study at the cell-free level in the expectation that the absence 
of a phenolic hydroxyl (e.g., in sterigmatocystin) may frequently 
signal operation of post-aromatic (rather than precyclic)4~6 re­
duction-dehydration as demonstrated in this study, especially for 
polycyclic phenols. 
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The broadly distributed, unicellular green alga Botryococcus 
braunii (Kiltzing) produces a large number of linear and mono­
cyclic irregular triterpenes ("botryococcenes") that constitute as 
much as 90% of the dry weight of the organism.1 The geo-
chemical significance of this prolific hydrocarbon source has been 
noted,2 and considerable effort has been expended on its cultivation 
for commerical purposes.3 The most abundant member of this 
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